

28289.06 27956.04 **Buy**

OMX18

OMX ICELAND 8

,06

Telco Regression Model

By Sondra Hoffman July 18, 2021

1632.51

1172.9

6230.9 ~ Sell

Telco Regression Model

The regression model indicates that each additional year in age is associated with an approximate \$2.80 increase in income.

Using the formula generated by the regression model, we can predict that a 27-year-old will make approximately \$21.14.

Associations Analysis

This scatter plot shows a correlation between age and income.

ncome

- There are a few outliers in the dataset.
- A linear relationship exists between variables.
- As a person gets older, there is a trend toward a higher income.

Associations of Age with Income

Correlations Analysis

- Correlation tests for how well a continuous predictor explains a response in a regression analysis.
- Due to the sample size, the correlation analysis shows a small p-value.
- The correlation value of 0.3279 shows a positive correlation of the data because it is greater than 0.

Correlations and Scatter Plot with Age

2 Variables: age income

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
age	1000	41.68400	12.55882	41684	18.00000	77.00000	age
income	1000	77.53500	107.04416	77535	9.00000	1668	income

Pearson Corr Prob	elation Coefficien > r under H0: Rh	ts, N = 1000 o=0
age age	age 1.00000	income 0.32795 <.0001
income income	income 1.00000	age 0.32795 <.0001

Correlations and Scatter Plot with Age

The REG Procedure Model: MODEL1 Dependent Variable: income income

No missing data <

Number of Observations Used 1000

1000

Number of Observations Read

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	1231121	1231121	120.27	<.0001		
Error	998	10215873	10236				
Corrected Total	999	11446995					

101.17483

77.53500

130.48924

R-Square

Adj R-Sq

0.1075

0.1067

The simple linear regression model fits the data better than the baseline model.

 Age explains 11% of variation in the income variable.

	Parameter Estimates							
Pagrossion equation is	Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Income $\nu = \beta_0 + \beta_1 x + \varepsilon$ or	Intercept	Intercept	1	-38.98175	11.09583	-3.51	0.0005	
$y = (-38.98 + 2.80)$ age + ε	age	age	1	2.79524	0.25488	10.97	<.0001	

Root MSE

Coeff Var

Dependent Mean

This indicates a significant statistical difference in the slope from 0.

Fit Diagnostics for Income

This is a visual representation to support the assumptions in this model.

The Quantile graph shows minor deviations from normality.

The Residual graph shows there is a bellshaped curve, supporting a normal distribution of data.

The Cook's D Observation shows a few outliers in the dataset.

Fit Plot for Income

- This shows a regression line placed over the data points in this dataset.
- The shaded area around the regression line helps assess the precision of the mean around the income values.
- The space between the dotted lines indicates a prediction limit.

Conclusion

Telco data is sufficient to predict future incomes.

Each additional year in age is associated with a \$2.80 increase in income.

A 27-year-old person at Telco can expect to make approximately \$21.14.

References

SAS Institute, Inc. (2019). Statistics 1: Introduction to ANOVA, regression, and logistic

regression.https://vle.sas.com/course/view.php?id=2113

ZyBooks. (2018). Statistics in business analytics:

https://learn.zybooks.com/zybook/MIS445ZybookInteractiveText2019